117 research outputs found

    Arbitrarily High Super-Resolving Phase Measurements at Telecommunication Wavelengths

    Full text link
    We present two experiments that achieve phase super-resolution at telecommunication wavelengths. One of the experiments is realized in the space domain and the other in the time domain. Both experiments show high visibilities and are performed with standard lasers and single-photon detectors. The first experiment uses six-photon coincidences, whereas the latter needs no coincidence measurements, is easy to perform, and achieves, in principle, arbitrarily high phase super-resolution. Here, we demonstrate a 30-fold increase of the resolution. We stress that neither entanglement nor joint detection is needed in these experiments, demonstrating that neither is necessary to achieve phase super-resolution.Comment: 5 pages, 7 figure

    Quantum Clock Synchronization with a Single Qudit

    Full text link
    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to detectable Byzantine agreement (DBA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm that solves the DBA and achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system
    corecore